Exam IV

 Section I

 Section I

 Part A - No Calculators

 Part A - No Calculators}

1. A p. 73
$\lim _{x \rightarrow 0} \frac{\frac{1}{x-1}+1}{x}=\lim _{x \rightarrow 0} \frac{1+(x-1)}{x(x-1)}=\lim _{x \rightarrow 0} \frac{x}{x(x-1)}=\lim _{x \rightarrow 0} \frac{1}{x-1}=-1$
2. E p. 73

Since $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$, the integrand has the form $\int e^{u} d u$.
Thus $\int \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x=\int e^{\sqrt{x}} \frac{1}{2 \sqrt{x}} d x=e^{\sqrt{x}}+C$
3. D p. 74
$y=\frac{3}{4+x^{2}} \Rightarrow \frac{d y}{d x}=\frac{-3 \cdot 2 x}{\left(4+x^{2}\right)^{2}}=\frac{-6 x}{\left(4+x^{2}\right)^{2}}$
4. B p. 74

By the Second Fundamental Theorem, $\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)$.
Then $F(x)=\int_{1}^{x}(\cos 6 t+1) d t \quad \Rightarrow \quad F^{\prime}(x)=\cos 6 x+1$.
5. C p. 74

Differentiating $x+x y+2 y^{2}=6$ implicitly gives $1+y+x \frac{d y}{d x}+4 y \frac{d y}{d x}=0$.
Evaluating at $(2,1)$ gives: $6 \frac{d y}{d x}=-2$

$$
\frac{d y}{d x}=-\frac{1}{3} .
$$

6. C p. 75

This limit is the definition of the derivative of $f(x)=3 x^{5}$ at $x=\frac{1}{2}$.
Since $f^{\prime}(x)=15 x^{4}, f^{\prime}\left(\frac{1}{2}\right)=15 \cdot\left(\frac{1}{2}\right)^{4}=\frac{15}{16}$.
7. E p. 75

The slope of the given line $5 x-y+6=0$ is $m=5$.
Since the tangent to the graph of $p(x)$ at $x=4$ is parallel to that given line, we know that $\mathrm{p}^{\prime}(4)=5$.
$p(x)=(x-1)(x+k) \quad \Rightarrow \quad p^{\prime}(x)=(x-1)+(x+k)$

$$
\Rightarrow \quad \mathrm{p}^{\prime}(4)=(4-1)+(4+\mathrm{k})=7+\mathrm{k}
$$

Since $p^{\prime}(4)$ must equal 5 , we have $7+k=5$.
Hence $k=-2$.
8. A p. 75
$\cos x=e^{y} \quad \Rightarrow \quad y=\ln (\cos x)$

$$
\Rightarrow \quad \frac{d y}{d x}=\frac{-\sin x}{\cos x}=-\tan x
$$

9. D p. 76
$a(t)=12 t^{2}$
$v(t)=\int a(t) d t=4 t^{3}+C$
$v(0)=6 \quad \Rightarrow \quad C=6 \quad \Rightarrow \quad v(t)=4 t^{3}+6$
$s(t)=\int v(t) d t=t^{4}+6 t+D$
$s(2)-s(0)=[16+12+D]-[0+0+D]=28$
10. B p. 76
$\mathrm{A}=\mathrm{x}^{2}$
$\frac{d A}{d t}=2 x \frac{d x}{d t}$
Since we are given that $\frac{d A}{d t}=3 \frac{d x}{d t}$, we can substitute.
$3 \frac{d x}{d t}=2 x \frac{d x}{d t} \quad \Rightarrow \quad x=\frac{3}{2}$
11. E p. 76
$M=\frac{1}{e-1} \int_{1}^{e} \frac{1}{x} d x=\frac{1}{e-1} \cdot \ln e=\frac{1}{e-1}$
12. B p. 77

$$
\begin{aligned}
\lim _{(x \rightarrow \infty} \frac{3 x^{2}+1}{(3-x)(3+x)} & =\lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{9+\left(x^{2}\right.} \\
& =\lim _{x \rightarrow \infty} \frac{3+\frac{1}{x^{2}}}{\frac{9}{x^{2}}-1}=-3
\end{aligned}
$$

13. D p. 77
$\int_{-2}^{2}\left(x^{7}+k\right) d x=\int_{-2}^{2} x^{7} d x+\int_{-2}^{2} k d x$
Note that $\mathrm{y}=\mathrm{x}^{7}$ is an odd function, so $\int_{-2}^{2} \mathrm{x}^{7} \mathrm{dx}=0$.
Thus $\int_{-2}^{2}\left(x^{7}+k\right) d x=0+4 k$. Since we are given that the value of the definite integral is 16 , we conclude that $k=4$.
14. D p. 77
$f(x)=\frac{\tan x}{\sin x}=\frac{1}{\cos x}$ for $x \neq \pi$.
For f to be continuous at $x=\pi$, the value $f(\pi)$ must be defined in such a way so that
$f(\pi)=\lim _{x \rightarrow \pi} f(x)$.
$\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} \frac{1}{\cos x}=\frac{1}{\cos \pi}=-1$.
15. C p. 78
$f(x)=x^{4}-18 x^{2}$
$f^{\prime}(x)=4 x^{3}-36 x$
$=4 x\left(x^{2}-9\right)$
$=4 x(x+3)(x-3) \Rightarrow$ The critical numbers are at $x=0, \pm 3$.
$f^{\prime \prime}(x)=12 x^{2}-36$
Thus: $\begin{cases}f^{\prime \prime}(0)=-36<0 & \text { Relative maximum at } x=0 \\ f^{\prime \prime}(-3)=108-36>0 & \text { Relative minimum at } x=-3 \\ f^{\prime \prime}(3)=108-36>0 & \text { Relative minimum at } x=3\end{cases}$
16. E p. 78

$$
\begin{aligned}
y & =3 x^{5}-10 x^{4} \\
y^{\prime} & =15 x^{4}-40 x^{3} \\
y^{\prime \prime} & =60 x^{3}-120 x^{2} \\
& =60 x^{2}(x-2)
\end{aligned}
$$

The second derivative changes sign at $x=2$, but not at $x=0$. Hence the only inflection point is at $x=2$.
17. D p. 78

Since $h(x)=f(g(x))$, we have $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \quad$ by the Chain Rule.
The graph of h has a horizontal tangent line if $h^{\prime}(x)=0$.
Hence we need $f^{\prime}(g(x)) \cdot g^{\prime}(x)=0$.
This occurs if $f^{\prime}(g(x))=0$ or if $g^{\prime}(x)=0$.
Since $f^{\prime}(-2)$ and $f^{\prime}(1)$ both have the value 0 , the first condition is satisfied if $g(x)$ is either -2 or 1 .

$$
\begin{array}{ll}
g(x)=-2 & \text { if } x=-4 \text { or } x=-2 . \\
g(x)=1 & \text { if } x=0 \text { or } x=3.4 .
\end{array}
$$

There are 4 horizontal tangents from this condition.
The second condition is satisfied at each horizontal tangent point for the function g.
These are at $x=-3, x=0$, and $x=2$.
The total list of x-values at which there are horizontal tangents is: $x=-4,-3,-2,0,2,3.4$. There are 6 places where this happens.
18. D p. 79

Cross sections taken perpendicular to the y-axis on the interval $\left[0, \frac{\pi}{2}\right]$ are circular. The radius of each circular cross section is an x-coordinate.
Since $y=\arcsin x$, we have $x=\sin y$.
Thus the volume is computed by $V=\pi \int_{0}^{\pi / 2}(\sin y)^{2} d y$.
19. A p. 79
$y=x e^{-k x}$
$y^{\prime}=e^{-k x}-k x e^{-k x}=e^{-k x}(1-k x) \quad \Rightarrow \quad$ Critical number at $x=\frac{1}{k}$.
$y\left(\frac{1}{k}\right)=\frac{1}{k} \cdot e^{-1} \quad \Rightarrow$
The point on the curve is $\left(\frac{1}{\mathrm{k}}, \frac{1}{\mathrm{ke}}\right)$.
To verify that there really is a maximum value at $x=\frac{1}{k}$, use the Second Derivative Test.
$y^{\prime \prime}=\mathrm{e}^{-\mathrm{kx}}(-\mathrm{k})-\mathrm{ke}^{-\mathrm{kx}}(1-\mathrm{kx})=-\mathrm{ke} \mathrm{e}^{-\mathrm{kx}}(2-\mathrm{kx})$
Then $y^{\prime \prime}\left(\frac{1}{k}\right)=-k e^{-1}(1)$. Since k is given to be positive, $y^{\prime \prime}\left(\frac{1}{k}\right)<0$. Hence there is a maximum value at $x=\frac{1}{k}$.
20. D p. 79

The slopes of the segments in the slope field depend only upon the variable y. We can tell this because for a given y, the slopes of the segments do not change as x varies.
Therefore we can eliminate the three suggested answers that have $\frac{d y}{d x}$ depend upon x. For $y=0$, the slopes are positive. The correct answer cannot be $\frac{d y}{d x}=y-2 y^{2}$, for that would have a slope of 0 when $y=0$.
21. B p. 80
$\mathrm{y}^{\prime}>0 \Rightarrow \mathrm{y}$ is an increasing function.
$\mathrm{y}^{\prime \prime}<0 \Rightarrow \mathrm{y}$ is concave down.
The only increasing and concave down curve is (B).
22. C p. 80

With $\mathrm{n}=3$, the width of each subinterval is 1 .
Thus $\mathrm{T}_{3}=\frac{1}{2}[1+2 \cdot 4+2 \cdot 9+16]=\frac{43}{2}$.
23. D p. 80
$f(x)=4 x^{3}-21 x^{2}+36 x-4$
For the graph of f to be deceasing, it is necessary that $\mathrm{f}^{\prime}(\mathrm{x})<0$.
$\begin{aligned} f^{\prime}(x)=12 x^{2}-42 x+36<0 & \Rightarrow \quad 2 x^{2}-7 x+6<0 \\ & \Rightarrow \quad(2 x-3)(x-2)<0 \\ & \Rightarrow \quad \frac{3}{2}<x<2\end{aligned}$
For the graph of f to be concave up, it is necessary that $f^{\prime \prime}(x)>0$.
$f^{\prime \prime}(\mathrm{x})=24 \mathrm{x}-42>0 \quad \Rightarrow \quad \mathrm{x}>\frac{7}{4}$
We must have both of these inequalities true. Hence $\frac{7}{4}<x<2$.
24. A p. 81

Since the rate of growth is $1500 \mathrm{e}^{3 \mathrm{t} / 4}$, we start with $\frac{\mathrm{dx}}{\mathrm{dt}}=1500 \mathrm{e}^{3 \mathrm{t} / 4}$.
Then $d x=1500 \mathrm{e}^{3 t / 4} \mathrm{dt}$.

$$
x=2000 \mathrm{e}^{3 t / 4}+C
$$

Knowing that $x=2000$ when $t=0$ allows us to evaluate C :

$$
2000=2000 \mathrm{e}^{0}+C \Rightarrow C=0
$$

Hence $\quad x=2000 \mathrm{e}^{3 t / 4}$.
When $t=4$, we have $x=2000 e^{3}$.
25. A p. 81

$$
\left.\int_{\mathrm{m}}^{3 \mathrm{~m}} \frac{1}{\mathrm{x}} \mathrm{dx}=\ln |\mathrm{x}|\right]_{\mathrm{m}}^{3 \mathrm{~m}}=\ln (3 \mathrm{~m})-\ln m=\ln 3
$$

This result is independent of m .
26. C p. 82

$$
\begin{array}{rlr}
x(t)=\ln t+\frac{t^{2}}{18}+1 & \Rightarrow \quad v(t)=x^{\prime}(t)=\frac{1}{t}+\frac{t}{9} \\
& \Rightarrow \quad a(t)=x^{\prime}(t)=-\frac{1}{t^{2}}+\frac{1}{9} .
\end{array}
$$

The acceleration is zero when $t=3$.
Then $v(3)=\frac{1}{3}+\frac{3}{9}=\frac{2}{3}$.
27. D p. 82

$$
\begin{aligned}
\int 6 \sin x \cos ^{2} x d x & =-6 \int(\cos x)^{2}(-\sin x) d x \\
& =-6 \frac{\cos ^{3} x}{3}+C=-2 \cos ^{3} x+C
\end{aligned}
$$

28. D p. 82

By the Second Fundamental Theorem, $G^{\prime}(x)=\sin (\ln 2 x)$.
Then $G^{\prime \prime}(x)=\cos (\ln 2 x) \cdot \frac{1}{2 x} \cdot 2=\frac{\cos (\ln 2 x)}{x}$.
Hence $G^{\prime \prime}\left(\frac{1}{2}\right)=\frac{\cos (\ln 1)}{1 / 2}=2 \cos 0=2$.

Exam IV
 Section I
 Part B - Calculators Permitted

1. D p. 83
I. $f^{\prime \prime}(x)$ changes sign at $x=-1$.

True
II. $f^{\prime \prime}(x)<0$ on the interval $(-1,3)$.

True
III. Since $\frac{d\left(f^{\prime}(x)\right)}{d x}<0$ in the vicinity of $x=1$, the function f^{\prime} is decreasing at $\mathrm{x}=1$.

False
2. D p. 83
$\frac{\ln x^{2}-x \ln x}{x-2}=\frac{2 \ln x-x \ln x}{x-2}$
$=\frac{(2-x) \ln x}{x-2}$
$=-\ln x$ for $x \neq 2$
Since f is given to be continuous at $x=2, \lim _{x \rightarrow 2} f(x)=f(2)$.
But $\lim _{x \rightarrow 2} f(x)=-\ln 2$. Hence $f(2)=-\ln 2$.
3. $\mathrm{E} \quad$ p. 84

Condition
Interpretation
Points
$f(x)>0 \quad \Rightarrow \quad$ the point $(x, f(x))$ is above the x-axis.
M, P, Q, R
$f^{\prime}(x)<0 \quad \Rightarrow \quad f$ is decreasing. $\quad M, R$
$f^{\prime \prime}(x)<0 \quad \Rightarrow \quad$ the graph of f is concave down. \quad, R
All three conditions occur only at point R.
4. D p. 84

With the substitution $u=\sqrt{1+x}$, we have $x=u^{2}-1$ and $d x=2 u d u$.
Then $\int 60 x \sqrt{1+x} d x=\int 60\left(u^{2}-1\right) \cdot u \cdot 2 u d u$

$$
=\int\left(120 u^{4}-120 u^{2}\right) d u=24 u^{5}-40 u^{3}+C
$$

5. B p. 84
$f^{\prime}(x)=\frac{2 x}{2 \sqrt{x^{2}+.0001}}$.
I. Since $f^{\prime}(0)$ exists, f is continuous at $x=0$.

False
II. $f^{\prime}(0)=0$. Thus there is a horizontal tangent at $x=0$.

True
III. $f^{\prime}(x)$ is defined as above with $f^{\prime}(0)=0$.

False
6. C. p. 85
$f(x)=\frac{1}{x^{2}}=x^{-2} \quad g(x)=\arctan x$
$f^{\prime}(x)=-\frac{2}{x^{3}}$
$g^{\prime}(x)=\frac{1}{1+x^{2}}$
When $\frac{1}{1+x^{2}}=\frac{-2}{x^{3}}$, then $x^{3}=-2-2 x^{2}$.
Solving $x^{3}+2 x^{2}+2=0$ gives $x=-2.359$.
7. B p. 85

The curves intersect at
A, where $x=2$
and B, where $x=5.4337$.
Then the area is:
$A=\int_{2}^{5.4337}(g(x)-f(x)) d x \approx 7.36$.
8. B p. 85

The average rate of change of a function f over an interval $[a, b]$ is defined to be $\frac{f(b)-f(a)}{b-a}$.
With the function $f(x)=\int_{0}^{x} \sqrt{1+\cos \left(t^{2}\right)} d t$ and the interval $[1,3]$,
we have, first of all, $f(3)-f(1)=\int_{0}^{3} \sqrt{1+\cos \left(t^{2}\right)} d t-\int_{0}^{1} \sqrt{1+\cos \left(t^{2}\right)} d t$

$$
=\int_{1}^{3} \sqrt{1+\cos \left(t^{2}\right)} d t
$$

Hence the average rate of change of the function is $\frac{1}{2} \int_{1}^{3} \sqrt{1+\cos \left(t^{2}\right)} d t=0.86$.
9. D p. 86
I. $f^{\prime}(0)=1 \quad \Rightarrow \quad f$ is increasing at $x=1$.

False
II. $f^{\prime}(x)>0$ for $x<2$ and $f^{\prime}(x)<0$ for $x>2$.

Hence f is increasing to the left of $x=2$ and decreasing to the right of $x=2$. There is a relative maximum there.

True
III. $f^{\prime}(x)$ is increasing on an open interval containing $x=-1$.

Hence, the graph is concave up at $x=-1$.
True
10. D p. 86

The graphs are shown to the left. The points A, B, and C have x-coordinates as follows:
$\mathrm{A}=-0.88947 ; \quad \mathrm{B}=1.86236 ; \quad \mathrm{C}=3.63796$

Use a calculator to evaluate
$\int_{A}^{B}(Y 1-Y 2) d x+\int_{B}^{C}(Y 2-Y 1) d x$
The value is approximately 4.98 .
11. C p. 86

Parts of the rectangles are above the curves for B and C.
The trapezoids are all on or under the curves for A, C, and E .
Hence, the answer is C.
12. B p. 87
$\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3} \quad \Rightarrow \quad \frac{\mathrm{dV}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}$
At $t=6$ seconds, $\frac{\mathrm{dV}}{\mathrm{dt}}$ can be estimated from the graph. The slope of the tangent to the curve at $t=6$ is approximately $\frac{2 \pi}{2}=\pi \mathrm{in}^{3} / \mathrm{sec}$.
Hence we use $\frac{d V}{d t}=\pi$.
In addition, when $t=6, V=4 \pi$. This allows us to find the radius r when $t=6$. From the original volume formula, $\frac{4}{3} \pi r^{3}=4 \pi \quad \Rightarrow \quad r^{3}=3 \quad \Rightarrow \quad r=3^{1 / 3}$.
Now from the formula for the rate of change of the volume, we have:

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \quad \Rightarrow \quad \pi=4 \pi\left(3^{1 / 3}\right)^{2} \frac{\mathrm{dr}}{\mathrm{dt}} . \quad \text { Hence } \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{4 \cdot 3^{2 / 3}}=0.12
$$

13. B
p. 87
$y=x \cos x$
$y^{\prime}=\cos x-x \sin x$
We want $\cos x-x \sin x=\frac{\pi}{2}$.
Shown to the right are graphs of

$$
Y_{1}=\cos x-x \sin x
$$

and $\quad Y_{2}=\frac{\pi}{2}$.

The viewing window is:
$-2 \pi \leq x \leq 2 \pi ;-6.2 \leq y \leq 6.2$.
Y_{1} and Y_{2} intersect four times on the interval $[-2 \pi, 2 \pi]$.
14. C p. 88

If we multiply out the given expression, we can obtain a simplified version:

$$
\begin{aligned}
x^{2}-2 x y+y^{2} & =y^{2}-x y \\
x^{2} & =x y
\end{aligned}
$$

Differentiate implicitly: $2 x=x \frac{d y}{d x}+y$
Then

$$
\frac{d y}{d x}=\frac{2 x-y}{x} .
$$

15. B p. 88

Since the cross sections perpendicular to the x-axis are isosceles right triangles, we want to create an integral of the form $\int_{a}^{b} f(x) d x$ for this
 volume.
A leg of the triangle is a typical y-coordinate and the cross sectional area is $\frac{1}{2} y y=\frac{1}{2} y^{2}$ where $y=\sqrt{x}$. Hence, the volume is $V=\int_{0}^{4} \frac{1}{2} x d x=\left.\frac{x^{2}}{4}\right|_{0} ^{4}=4$.
16. D p. 89

Since the graph of f is made up of straight line segments and a semicircle, we can evaluate F at each of the integer coordinates from $x=0$ through $x=8$. Note that sections of the graph below the t-axis decrease the value of F .

x	0	1	2	3	4	5	6	7	8
$\mathrm{~F}(\mathrm{x})$	0	.25	1	1.5	.715	-.071	.429	.929	.429

The value of $F(x)$ changes from positive to negative at an x-coordinate between 4 and 5 . The value of $F(x)$ changes from negative to positive at an x-coordinate between 5 and 6 . Since $f(t) \geq 0$ for $0 \leq t \leq 3$ and for $5 \leq t \leq 7, F$ is increasing on those intervals. Since $f(t) \leq 0$ for $3 \leq t \leq 5$ and for $7 \leq t \leq 8, F$ is decreasing on those intervals. Hence the only zeros for the function F occur in the intervals $[4,5]$ and $[5,6]$.
17. B
p. 89

Separate variables to solve the differential equation.

$$
\begin{aligned}
\frac{d N}{d t}=2 N & \Rightarrow \frac{d N}{N}=2 d t \\
& \Rightarrow \ln N=2 t+C \\
& \Rightarrow N=e^{2 t+C}=e^{2 t} \cdot e^{C}=D e^{2 t} \quad\left(\text { where } D=e^{C}\right)
\end{aligned}
$$

Since $\mathrm{N}=3$ when $\mathrm{t}=0$, we have $3=\mathrm{De}{ }^{0}$, which implies $\mathrm{D}=3$.
Thus we can write: $\mathrm{N}=3 \mathrm{e}^{2 \mathrm{t}}$. Now let $\mathrm{N}=1210$.
Then we have $1210=3 \mathrm{e}^{2 \mathrm{t}} \quad \Rightarrow \quad \frac{1210}{3}=\mathrm{e}^{2 \mathrm{t}}$
$\Rightarrow \quad 2 t=\ln \frac{1210}{3}$
$\Rightarrow \quad \mathrm{t}=\frac{\ln 12.10-\ln 3}{2} \approx 3$

Exam IV
 Section II
 Part A - Calculators Permitted

1. p. 91
(a) $\frac{\mathrm{dy}}{\mathrm{dt}}=-0.1(\mathrm{y}-70) \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}-70}=-0.1 \mathrm{dt}$

$$
\Rightarrow \ln (y-70)=-0.1 t+C \quad(y \geq 70 \text { as the tea cools })
$$

$y=180$ when $t=0$ gives $\ln (180-70)=-0.1 \cdot 0+C$, so $C=\ln 110$.
Then we have

$$
\begin{aligned}
\ln (y-70) & =-0.1 t+\ln 110 \\
y-70 & =e^{-0.1 t+\ln 110}=e^{-0.1 t} \cdot e^{\ln 110} \\
y & =70+110 e^{-0.1 t}
\end{aligned}
$$

(b) When $\mathrm{t}=10$, we have $\mathrm{y}=70+110 \mathrm{e}^{-0.1 \cdot 10}=10+110 \mathrm{e}^{-1} \approx 110.467^{\circ}$.
(c) Determine t so that $\mathrm{y}=120$.
$\begin{aligned} & 120=70+110 \mathrm{e}^{-0.1 \mathrm{t}} \\ & \Rightarrow \quad 50=110 \mathrm{e}^{-0.1 \mathrm{t}} \\ & \Rightarrow \quad \ln \frac{5}{11}=-0.1 \mathrm{t}\end{aligned} \quad \Rightarrow \quad \begin{aligned} & \frac{5}{11}=\mathrm{e}^{-0.1 \mathrm{t}} \\ & 7.885\end{aligned}$
The tea is safe to drink after 7.885 minutes.
2. p. 92
(a)

$h^{2}=(275-5 t)^{2}+(2.5 t)^{2}$
$2 \mathrm{~h} \frac{\mathrm{dh}}{\mathrm{dt}}=2(275-5 \mathrm{t})(-5)+2(2.5 \mathrm{t})(2.5) \Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{(275-5 \mathrm{t})(-5)+(2.5 \mathrm{t})(2.5)}{\mathrm{h}}$
When $t=40$, the triangle has legs of 75 feet and 100 feet. Hence the hypotenuse $h=125$ feet.
Then $\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{(75)(-5)+(100)(2.5)}{\mathrm{h}}=\frac{-375+250}{125}=-1$.
The distance between the cat and the balloon is decreasing at $1 \mathrm{ft} / \mathrm{sec}$.
(b) When $t=50$, the triangle has legs of 25 feet and 125 feet. Then the hypotenuse $\mathrm{h}=25 \sqrt{26}$ feet. Then $\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{(25)(-5)+(125)(2.5)}{25 \sqrt{26}}=\frac{-5+12.5}{\sqrt{26}}$ $=\frac{7.5}{\sqrt{26}} \approx 1.471$. Now distance between the cat and balloon is increasing at a rate of about $1.471 \mathrm{ft} / \mathrm{sec}$.
(c) Using the expression for $\frac{d h}{d t}$ from part (a) and multiplying we obtain $\frac{d h}{d t}=\frac{-1375+25 t+6.25 t}{h} \cdot \frac{d h}{d t}=0$ when $31.25 t=1375$ and $t=44 \mathrm{sec}$ Since $\frac{d h}{d t}$ goes from neg to pos at $t=44$, this is a relative minimum.

Let t be the number of seconds after the balloon is released (and the cat starts running). The variable h denotes the distance between the cat and the balloon.

Then the diagram to the left shows the important distances.
$5:\left\{\begin{array}{l}1: \text { expression for } \\ \text { distance } \\ 1: \frac{d h}{d t} \\ 1: \text { answer } \\ 1: \text { rate }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{d h}{d t} \text { at } t=50 \\ 1: \text { explanation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { explanation }\end{array}\right.$
3. p. 93
(a) The given function p^{\prime} has degree 7. Therefore p has degree 8 .
(b) The instantaneous rate of change of the function p at $x=6$ is simply the value of $p^{\prime}(6)$.

$$
p^{\prime}(6)=7 \cdot 5 \cdot 4^{2} \cdot 2^{3}=4480
$$

(c) A graph of the given derivative function p^{\prime} is shown below. There has been no attempt to get the vertical scale accurate. However, x-coordinates of the relative extreme values are shown, and the intervals of positive and negative values are correct.

The function p is increasing if $p^{\prime}(x)>0$. This occurs for

$$
-1<x<1 \text { and for } x>4 .
$$

(d) We know that the graph of p will be concave down on those intervals on which $\mathrm{p}^{\prime}(\mathrm{x})$ is decreasing or $\mathrm{p}^{\prime \prime}(\mathrm{x})$ is negative.
$p^{\prime \prime}(x)=(x-1)(x-2)^{2}(x-4)^{3}+(x+1)(x-2)^{2}(x-4)^{3}+$
$2\left(x^{2}-1\right)(x-2)(x-4)^{3}+3\left(x^{2}-1\right)(x-2)^{2}(x-4)^{2}$.
Graphing $\mathrm{p}^{\prime \prime}$ we see that the zeros of $\mathrm{p}^{\prime \prime}$ are $-0.526,1.288,2$, and 2.953 and the graph of p is concave down on $-0.526<x<1.288$ and for $2<x<2.953$.
(On the graph of $p^{\prime \prime}$ at $x=4$ there is a relative minimum, but not a zero.)

Exam IV
 Section II
 Part B - No Calculators

4. p. 94
(a) $\lim _{x \rightarrow 0^{+}} f(x)=2$ and $\lim _{x \rightarrow 0^{-}} f(x)=2$. Thus $\lim _{x \rightarrow 0} f(x)=2$.
(b) $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=$ the left-hand slope at $x=0$ $=1$
(c) To the left of $x=0, f^{\prime}(x)$ is constant (with a value of 1$)$. Just to the right of $x=0, f^{\prime}(x)$ appears to have a value of about 5 . Thus $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist.
(d)
$\int_{-1}^{0} f(x) d x=\frac{3}{2}$. This is obtained by counting areas in the graph.
(e)

$$
\int_{-2}^{4} f(x) d x=\frac{2}{2}[0+2 \cdot 2+2 \cdot 6+2]=18
$$

1: answer

1: answer

3:\{ $\left\{\begin{array}{l}1: \lim _{x \rightarrow 0^{-}} f^{\prime}(x) \\ 1: \lim _{x \rightarrow 0^{+}} f^{\prime}(x) \\ \text { 1:conclusion }\end{array}\right.$

2: answer

2: $\left\{\begin{array}{l}1: \text { Trapezoid method } \\ 1: \text { answer }\end{array}\right.$
5. p. 95
(a) Since $g(x)=\frac{x \cdot|x|}{x^{2}+1}$, then $g(-x)=\frac{-x \cdot|-x|}{(-x)^{2}+1}=\frac{-x \cdot|x|}{x^{2}+1}=-g(x)$ for all x.

Differentiate the equation obtained above: $g(-x)=-g(x)$.
$g^{\prime}(-x) \cdot(-1)=-g^{\prime}(x) \quad \Rightarrow \quad g^{\prime}(-x)=g^{\prime}(x)$
Hence the derivative of the function g is an even function.
(b) For $x \geq 0, g(x)=\frac{x^{2}}{x^{2}+1}$

Then $g^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2 x}{\left(x^{2}+1\right)^{2}}$
$2:\left\{\begin{array}{l}1: \mathrm{g}^{\prime}(x) \\ 1: \mathrm{g}^{\prime}(2)\end{array}\right.$
Therefore $g^{\prime}(2)=\frac{4}{25}$.
(c)

$$
\begin{aligned}
\int_{0}^{1} g(x) d x & =\int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x \\
& =\int_{0}^{1} \frac{\left(x^{2}+1\right)-1}{x^{2}+1} d x=\int_{0}^{1}\left[1-\frac{1}{x^{2}+1}\right] d x \\
& =[x-\operatorname{Arctan} x]_{0}^{1} \\
& =(1-\operatorname{Arctan} 1)-(0-\operatorname{Arctan} 0)=1-\frac{\pi}{4}
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+1}=1$.
(e) For $x \geq 0, g(x)=\frac{x^{2}}{x^{2}+1}$ and $g^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}$.

On the interval $[0, \infty), \mathrm{g}^{\prime}(\mathrm{x}) \geq 0$, so g is an increasing function.
Since $g^{\prime}(x)$ exists for all $x \geq 0$, the function g is continuous.
$2:\left\{\begin{array}{l}1: \text { antiderivative } \\ 1 \text { :answer }\end{array}\right.$

1: answer

2: $\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { justification }\end{array}\right.$
$g(0)=0$ and $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+1}=1$.
Since $g(x)$ never attains the value 1 (the numerator of the fraction is smaller than the denominator), the range of the function for $x \geq 0$ is the interval $[0,1$).

As shown in part (a), g is an odd function. Then the values of the function for negative inputs x are the numerical opposites of the values for positive inputs x.
Hence the range of the function g is the open interval $(-1,1)$.
6. p. 96
(a) $G(x)=\int_{-4}^{x} f(t) d t$

Then $G(-4)=\int_{-4}^{-4} f(t) d t$. Provided the function f is defined at $t=-4$ (and it is), then this integral has a value of 0 .
(b) By the Second Fundamental Theorem, $G^{\prime}(x)=f(x)$.

Thus $G^{\prime}(-1)=f(-1)=2$.
(c) The given graph is the derivative of G. The graph of G will be concave down if its derivative is decreasing; that is, if its second derivative is negative-valued. This occurs on the open intervals $(-4,-3)$ and $(-1,2)$.
(d) The maximum value of G occurs at either a critical point or an endpoint of the interval. G has critical points at $x=1$ and $x=3$, where $G^{\prime}(x)=f(x)=0$. By summing areas of regions we estimate that at the critical points

$$
G(1)=\int_{-4}^{1} f(x) d x=7 \text { and } G(3)=7-\frac{4}{3}=\frac{17}{3} .
$$

At the endpoints,

$$
G(-4)=\int_{-4}^{-4} f(x) d x=0 \text { and } G(4)=\int_{-4}^{4} f(x) d x=7-\frac{4}{3}+1=\frac{20}{3}
$$

Therefore, G has its maximum value of 7 at $\mathrm{x}=1$.

1 : answer

2: $\left\{\begin{array}{l}1: G^{\prime}(x)=f(x) \\ 1: \text { answer }\end{array}\right.$

3: $\left\{\begin{array}{l}2: \text { intervals } \\ 1: \text { justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { answer } \\ 2: \text { justification }\end{array}\right.$

