Exam IV Section I Part A — No Calculators

$$\lim_{x \to 0} \frac{\frac{1}{x-1} + 1}{x} = \lim_{x \to 0} \frac{1 + (x-1)}{x(x-1)} = \lim_{x \to 0} \frac{x}{x(x-1)} = \lim_{x \to 0} \frac{1}{x-1} = -1$$

Since
$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$
, the integrand has the form $\int e^{u} du$.

Thus
$$\int \frac{e^{\sqrt{x}}}{2\sqrt{x}} dx = \int e^{\sqrt{x}} \frac{1}{2\sqrt{x}} dx = e^{\sqrt{x}} + C$$

$$y = \frac{3}{4 + x^2}$$
 \Rightarrow $\frac{dy}{dx} = \frac{-3 \cdot 2x}{(4 + x^2)^2} = \frac{-6x}{(4 + x^2)^2}$

By the Second Fundamental Theorem,
$$\frac{d}{dx} \begin{bmatrix} x \\ 0 \end{bmatrix} f(t) dt = f(x)$$
.

Then
$$F(x) = \int_{1}^{x} (\cos 6t + 1) dt$$
 \Rightarrow $F'(x) = \cos 6x + 1$.

Differentiating
$$x + xy + 2y^2 = 6$$
 implicitly gives $1 + y + x \frac{dy}{dx} + 4y \frac{dy}{dx} = 0$.

Evaluating at (2,1) gives:
$$6 \frac{dy}{dx} = -2$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{1}{3}.$$

6. C p. 75

This limit is the definition of the derivative of
$$f(x) = 3x^5$$
 at $x = \frac{1}{2}$.

Since
$$f'(x) = 15x^4$$
, $f'(\frac{1}{2}) = 15 \cdot (\frac{1}{2})^4 = \frac{15}{16}$.

7. E p. 75

The slope of the given line 5x-y+6=0 is m=5.

Since the tangent to the graph of p(x) at x = 4 is parallel to that given line, we know that p'(4) = 5.

$$p(x) = (x-1)(x+k)$$
 \Rightarrow $p'(x) = (x-1) + (x+k)$
 \Rightarrow $p'(4) = (4-1) + (4+k) = 7+k$

Since p'(4) must equal 5, we have 7 + k = 5.

Hence k = -2.

8. A p. 75

$$\cos x = e^y$$
 \Rightarrow $y = \ln(\cos x)$
 $\Rightarrow \frac{dy}{dx} = \frac{-\sin x}{\cos x} = -\tan x$

9. D p. 76

$$a(t) = 12t^2$$

$$v(t) = \int a(t) dt = 4t^3 + C$$

$$v(0) = 6 \implies C = 6 \implies v(t) = 4t^3 + 6$$

$$s(t) = \int v(t) dt = t^4 + 6t + D$$

$$s(2) - s(0) = [16 + 12 + D] - [0 + 0 + D] = 28$$

10. B p. 76

$$A = x^2$$

Since we are given that $\frac{dA}{dt} = 3\frac{dx}{dt}$, we can substitute.

$$3\frac{dx}{dt} = 2x\frac{dx}{dt} \implies x = \frac{3}{2}$$

11. E p. 76

$$M = \frac{1}{e-1} \int_{1}^{e} \frac{1}{x} dx = \frac{1}{e-1} \cdot \ln e = \frac{1}{e-1}$$

12. B p. 77

$$\lim_{(x \to \infty)} \frac{3x^2 + 1}{(3 - x)(3 + x)} = \lim_{x \to \infty} \frac{3x^2 + 1}{9 - x^2}$$

$$= \lim_{x \to \infty} \frac{3 + \frac{1}{2}}{\frac{9}{2} - 1} = -3$$

13. D p. 77

$$\int_{-2}^{2} (x^7 + k) dx = \int_{-2}^{2} x^7 dx + \int_{-2}^{2} k dx$$

Note that $y = x^7$ is an odd function, so $\int_{0}^{1} x^7 dx = 0$.

Thus $\int (x^7 + k) dx = 0 + 4k$. Since we are given that the value of the definite integral is 16, we conclude that k = 4.

14. D p. 77

$$f(x) = \frac{\tan x}{\sin x} = \frac{1}{\cos x}$$
 for $x \neq \pi$.

For f to be continuous at $x = \pi$, the value $f(\pi)$ must be defined in such a way so that

$$f(\pi) = \lim_{x \to \pi} f(x).$$

 $\lim_{x\to\pi} \ f(x) \ = \ \lim_{x\to\pi} \frac{1}{\cos x} \ = \ \frac{1}{\cos\pi} \ = -1 \ .$

15. C p. 78

$$f(x) = x^4 - 18x^2$$

$$f'(x) = 4x^3 - 36x$$

$$=4x(x^2-9)$$

$$= 4x(x+3)(x-3) \Rightarrow$$

The critical numbers are at $x = 0, \pm 3$.

$$f''(x) = 12x^2 - 36$$

$$\int f''(0) = -36 < 0$$

Relative maximum at x = 0

Thus:
$$\int_{0}^{1} f''(-3) = 108 - 36 > 0$$

Relative minimum at x = -3

Thus:
$$\begin{cases} f''(0) = -36 < 0 \\ f''(-3) = 108 - 36 > 0 \\ f''(3) = 108 - 36 > 0 \end{cases}$$

Relative minimum at x = 3

16. E. p. 78

$$y = 3x^{5} - 10x^{4}$$

 $y' = 15x^{4} - 40x^{3}$
 $y'' = 60x^{3} - 120x^{2}$

$$y' = 15x^4 - 40x^3$$

$$y'' = 60 x^3 - 120$$

$$= 60x^2 (x-2)$$

The second derivative changes sign at x = 2, but **not** at x = 0. Hence the only inflection point is at x = 2.

17. D p. 78

Since h(x) = f(g(x)), we have $h'(x) = f'(g(x)) \cdot g'(x)$ by the Chain Rule.

The graph of h has a horizontal tangent line if h'(x) = 0.

Hence we need $f'(g(x)) \cdot g'(x) = 0$.

This occurs if f'(g(x)) = 0 or if g'(x) = 0.

Since f'(-2) and f'(1) both have the value 0, the first condition is satisfied if g(x) is either -2 or 1.

$$g(x) = -2$$
 if $x = -4$ or $x = -2$.
 $g(x) = 1$ if $x = 0$ or $x = 3.4$.

There are 4 horizontal tangents from this condition.

The second condition is satisfied at each horizontal tangent point for the function g. These are at x = -3, x = 0, and x = 2.

The total list of x-values at which there are horizontal tangents is: x = -4, -3, -2, 0, 2, 3.4. There are 6 places where this happens.

18. D p. 79

Cross sections taken perpendicular to the y-axis on the interval $\left[0,\frac{\pi}{2}\right]$ are circular. The radius of each circular cross section is an x-coordinate.

Since $y = \arcsin x$, we have $x = \sin y$.

Thus the volume is computed by $V = \pi \int_{0}^{\pi/2} (\sin y)^2 dy$.

19. A p. 79

$$y = xe^{-kx}$$

 $y' = e^{-kx} - kxe^{-kx} = e^{-kx} (1 - kx)$ \Rightarrow Critical number at $x = \frac{1}{k}$.

$$y(\frac{1}{k}) = \frac{1}{k} \cdot e^{-1} \implies$$

The point on the curve is $(\frac{1}{k}, \frac{1}{ke})$.

To verify that there really is a maximum value at $x = \frac{1}{k}$, use the Second Derivative Test.

$$y'' = e^{-kx} (-k) - ke^{-kx} (1 - kx) = -ke^{-kx} (2 - kx)$$

Then $y''(\frac{1}{k}) = -ke^{-1}$ (1). Since k is given to be positive, $y''(\frac{1}{k}) < 0$. Hence there is a maximum value at $x = \frac{1}{k}$.

20. D p. 79

The slopes of the segments in the slope field depend only upon the variable y. We can tell this because for a given y, the slopes of the segments do not change as x varies.

Therefore we can eliminate the three suggested answers that have $\frac{dy}{dx}$ depend upon x.

For y = 0, the slopes are positive. The correct answer cannot be $\frac{dy}{dx} = y - 2y^2$, for that would have a slope of 0 when y = 0.

21. B p. 80

 $y' > 0 \implies y$ is an increasing function.

 $y'' < 0 \implies y$ is concave down.

The only increasing and concave down curve is (B).

22. C p. 80

With n = 3, the width of each subinterval is 1.

Thus $T_3 = \frac{1}{2} [1 + 2 \cdot 4 + 2 \cdot 9 + 16] = \frac{43}{2}$.

23. D p. 80

$$f(x) = 4x^3 - 21x^2 + 36x - 4$$

For the graph of f to be deceasing, it is necessary that f'(x) < 0.

$$f'(x) = 12x^2 - 42x + 36 < 0$$
 \Rightarrow $2x^2 - 7x + 6 < 0$ \Rightarrow $(2x - 3)(x - 2) < 0$ \Rightarrow $\frac{3}{2} < x < 2$

For the graph of f to be concave up, it is necessary that f''(x) > 0.

$$f''(x) = 24x - 42 > 0 \implies x > \frac{7}{4}$$

We must have <u>both</u> of these inequalities true. Hence $\frac{7}{4} < x < 2$.

24. Α p. 81

Since the rate of growth is $1500 e^{3t/4}$, we start with $\frac{dx}{dt} = 1500 e^{3t/4}$.

Then $dx = 1500 e^{3t/4} dt$.

$$x = 2000 e^{3t/4} + C$$

Knowing that x = 2000 when t = 0 allows us to evaluate C:

$$2000 = 2000 e^{0} + C \implies C = 0.$$

Hence $x = 2000 e^{3t/4}$.

When t = 4, we have $x = 2000 e^{3}$.

p. 81 25. A

$$\int_{m}^{3m} \frac{1}{x} dx = \ln(x)^{3m} = \ln(3m) - \ln m = \ln 3.$$

This result is independent of m.

26. C p. 82

$$x(t) = \ln t + \frac{t^2}{18} + 1$$
 \Rightarrow $v(t) = x'(t) = \frac{1}{t} + \frac{t}{9}$ \Rightarrow $a(t) = x'(t) = -\frac{1}{t^2} + \frac{1}{9}$.

The acceleration is zero when t = 3.

Then v(3) =
$$\frac{1}{3} + \frac{3}{9} = \frac{2}{3}$$
.

27. D p. 82

$$\int 6 \sin x \cos^2 x \, dx = -6 \int (\cos x)^2 (-\sin x) \, dx$$
$$= -6 \frac{\cos^3 x}{3} + C = -2 \cos^3 x + C$$

28. D p. 82

By the Second Fundamental Theorem, $G'(x) = \sin(\ln 2x)$.

Then G''(x) =
$$\cos(\ln 2x) \cdot \frac{1}{2x} \cdot 2 = \frac{\cos(\ln 2x)}{x}$$
.
Hence G''($\frac{1}{2}$) = $\frac{\cos(\ln 1)}{1/2}$ = $2\cos 0$ = 2.

Hence
$$G''(\frac{1}{2}) = \frac{\cos(\ln 1)}{1/2} = 2\cos 0 = 2$$

Exam IV Section I Part B — Calculators Permitted

1. D p. 83

I. f''(x) changes sign at x = -1.

True

II. f''(x) < 0 on the interval (-1,3).

True

III. Since $\frac{d(f'(x))}{dx} < 0$ in the vicinity of x = 1, the function f' is decreasing at x = 1.

False

$$\frac{\ln x^2 - x \ln x}{x - 2} = \frac{2 \ln x - x \ln x}{x - 2}$$
$$= \frac{(2 - x) \ln x}{x - 2}$$
$$= -\ln x \text{ for } x \neq 2$$

Since f is given to be continuous at x = 2, $\lim_{x\to 2} f(x) = f(2)$.

But $\lim_{x\to 2} f(x) = -\ln 2$. Hence $f(2) = -\ln 2$.

3. E p. 84

Condition	. <u> </u>	Interpretation	Points
f(x) > 0	\Rightarrow	the point $(x,f(x))$ is above the x-axis.	M, P, Q, R
f'(x) < 0	\Rightarrow	f is decreasing.	M, R
f''(x) < 0	\Rightarrow	the graph of f is concave down.	Q, R

All three conditions occur only at point R.

4. D p. 84

With the substitution $u = \sqrt{1+x}$, we have $x = u^2 - 1$ and dx = 2u du.

Then
$$\int 60x\sqrt{1+x} dx = \int 60 (u^2 - 1) \cdot u \cdot 2u du$$

= $\int (120u^4 - 120u^2) du = 24u^5 - 40u^3 + C$

5. B p. 84

$$f'(x) = \frac{2x}{2\sqrt{x^2 + .0001}}$$

I. Since f'(0) exists, f is continuous at x = 0.

False

II. f'(0) = 0. Thus there is a horizontal tangent at x = 0.

True

III. f'(x) is defined as above with f'(0) = 0.

False

6. C p. 85

$$f(x) = \frac{1}{x^2} = x^{-2}$$

 $g(x) = \arctan x$

$$f'(x) = -\frac{2}{x^3}$$

$$g'(x) = \frac{1}{1+x^2}$$

When
$$\frac{1}{1+x^2} = \frac{-2}{x^3}$$
, then $x^3 = -2 - 2x^2$.

Solving $x^3 + 2x^2 + 2 = 0$ gives x = -2.359.

7. B p. 85

The curves intersect at

A, where
$$x = 2$$

and B, where
$$x = 5.4337$$
.

Then the area is:

$$A = \int_{2}^{2} (g(x) - f(x)) dx \approx 7.36$$
.

8. B p. 85

The average rate of change of a function f over an interval $\begin{bmatrix} a \\ b \end{bmatrix}$ is defined to be $\frac{f(b)-f(a)}{b-a}$.

With the function $f(x) = \int_{0}^{x} \sqrt{1 + \cos(t^2)} dt$ and the interval [1,3],

we have, first of all, $f(3) - f(1) = \int_{0}^{3} \sqrt{1 + \cos(t^2)} dt - \int_{0}^{1} \sqrt{1 + \cos(t^2)} dt$ $= \int_{1}^{3} \sqrt{1 + \cos(t^2)} dt.$

Hence the average rate of change of the function is $\frac{1}{2} \int_{1}^{3} \sqrt{1 + \cos(t^2)} dt \approx 0.86$.

- 9. D p. 86
 - I. $f'(0) = 1 \implies f$ is increasing at x = 1.

False

II. f'(x) > 0 for x < 2 and f'(x) < 0 for x > 2.

Hence f is increasing to the left of x = 2 and decreasing to the right of x = 2. There is a relative maximum there.

True

III. f'(x) is increasing on an open interval containing x = -1. Hence, the graph is concave up at x = -1.

True

10. D

The graphs are shown to the left. The points A, B, and C have x-coordinates as follows:

$$A = -0.88947$$
; $B = 1.86236$; $C = 3.63796$

Use a calculator to evaluate

$$\int_{A}^{B} (Y1 - Y2) dx + \int_{B}^{C} (Y2 - Y1) dx$$

The value is approximately 4.98.

11. C p. 86

Parts of the rectangles are above the curves for B and C. The trapezoids are all on or under the curves for A, C, and E. Hence, the answer is C.

12. B p. 87

$$V = \frac{4}{3} \pi r^3$$
 \Rightarrow $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$

At t=6 seconds, $\frac{dV}{dt}$ can be estimated from the graph. The slope of the tangent to the curve at t=6 is approximately $\frac{2\pi}{2}=\pi$ in $^3/\text{sec}$.

Hence we use $\frac{dV}{dt} = \pi$.

In addition, when t=6, $V=4\pi$. This allows us to find the radius r when t=6. From the original volume formula,

$$\frac{4}{3}\pi r^3 = 4\pi \quad \Rightarrow \quad r^3 = 3 \quad \Rightarrow \quad r = 3^{1/3}.$$

Now from the formula for the rate of change of the volume, we have:

$$\frac{\mathrm{dV}}{\mathrm{dt}} = 4\pi \, \mathrm{r}^2 \frac{\mathrm{dr}}{\mathrm{dt}} \qquad \Rightarrow \qquad \pi = 4\pi \big(3^{1/3}\big)^2 \frac{\mathrm{dr}}{\mathrm{dt}}. \quad \text{Hence } \frac{\mathrm{dr}}{\mathrm{dt}} = \frac{1}{4 \cdot 3^{2/3}} \approx 0.12$$

13. B p. 87

$$y = x \cos x$$

 $y' = \cos x - x \sin x$

We want $\cos x - x \sin x = \frac{\pi}{2}$.

Shown to the right are graphs of

$$Y_1 = \cos x - x \sin x$$

and
$$Y_2 = \frac{\pi}{2}$$
.

The viewing window is:

$$-2\pi \le x \le 2\pi$$
; $-6.2 \le y \le 6.2$.

 Y_1 and Y_2 intersect four times on the interval $[-2\pi, 2\pi]$.

14. C p. 88

If we multiply out the given expression, we can obtain a simplified version:

$$x^2 - 2xy + y^2 = y^2 - xy$$
$$x^2 = xy$$

Differentiate implicitly: $2x = x \frac{dy}{dx} + y$

$$\frac{dy}{dx} = \frac{2x-y}{x}$$

15. B p. 88

Since the cross sections perpendicular to the *x*-axis are isosceles right triangles, we want to create an

integral of the form $\int_{a}^{b} f(x) dx$ for this

volume.

A leg of the triangle is a typical y-coordinate and the cross sectional area is

$$\frac{1}{2}yy = \frac{1}{2}y^2$$
 where $y = \sqrt{x}$. Hence, the volume is $V = \int_0^4 \frac{1}{2}x \ dx = \frac{x^2}{4} \Big|_0^4 = 4$.

16. D p. 89

Since the graph of f is made up of straight line segments and a semicircle, we can evaluate F at each of the integer coordinates from x = 0 through x = 8. Note that sections of the graph below the t-axis decrease the value of F.

Γ	х	0	1	2	3	4	5	6 /	7	8
Г	F(x)	0	.25	1	1.5	.715	071	.429	.929	.429

The value of F(x) changes from positive to negative at an x-coordinate between 4 and 5. The value of F(x) changes from negative to positive at an x-coordinate between 5 and 6. Since $f(t) \ge 0$ for $0 \le t \le 3$ and for $5 \le t \le 7$, F is increasing on those intervals. Since $f(t) \le 0$ for $0 \le t \le 5$ and for $0 \le t \le 7$, F is decreasing on those intervals. Hence the only zeros for the function F occur in the intervals [4,5] and [5,6].

17. B p. 89

Separate variables to solve the differential equation.

$$\frac{dN}{dt} = 2N \qquad \Rightarrow \qquad \frac{dN}{N} = 2dt$$

$$\Rightarrow \qquad \ln N = 2t + C$$

$$\Rightarrow \qquad N = e^{2t + C} = e^{2t} \cdot e^{C} = De^{2t} \quad \text{(where } D = e^{C}\text{)}$$

Since N = 3 when t = 0, we have $3 = De^{0}$, which implies D = 3.

Thus we can write: $N = 3e^{2t}$. Now let N = 1210.

Then we have
$$1210 = 3e^{2t}$$
 \Rightarrow $\frac{1210}{3} = e^{2t}$ \Rightarrow $2t = \ln \frac{1210}{3}$ \Rightarrow $t = \frac{\ln 1210 - \ln 3}{2} \approx 3$

1: separates variables
1: antiderivatives

1: constant of integratio

1: uses initial condition

1: solves for y

Exam IV Section II Part A — Calculators Permitted

(a)
$$\frac{dy}{dt} = -0.1(y - 70)$$
 $\Rightarrow \frac{dy}{y - 70} = -0.1 dt$
 $\Rightarrow \ln(y - 70) = -0.1t + C$ ($y \ge 70$ as the tea cools)

y = 180 when t = 0 gives $ln(180-70) = -0.1 \cdot 0 + C$, so C = ln 110.

Then we have

$$\begin{aligned} \ln(y-70) &= -0.1t + \ln 110 \\ y-70 &= e^{-0.1t + \ln 110} \\ y &= 70 + 110 \, e^{-0.1t} \end{aligned} = e^{-0.1t} \cdot e^{\ln 110}$$

- (b) When t = 10, we have $y = 70 + 110 e^{-0.1 \cdot 10} = 10 + 110 e^{-1} \approx 110.467^{\circ}$.
- (c) Determine t so that y = 120. $120 = 70 + 110 e^{-0.1t}$ \Rightarrow $50 = 110 e^{-0.1t}$ \Rightarrow $\frac{5}{11} = e^{-0.1t}$ \Rightarrow $1 = \frac{10.5 - \ln 11}{-0.1} \approx 1 = \frac{1 \cdot y(t) = 120}{1 \cdot \text{solves for } t}$ 7.885 The tea is safe to drink after 7.885 minutes .

2. p. 92 (a)

Let t be the number of seconds after the balloon is released (and the cat starts running). The variable h denotes the distance between the cat and the balloon.

Then the diagram to the left shows the important distances.

$$h^{2} = (275 - 5t)^{2} + (2.5t)^{2}$$

$$2h \frac{dh}{dt} = 2(275 - 5t)(-5) + 2(2.5t)(2.5) \implies \frac{dh}{dt} = \frac{(275 - 5t)(-5) + (2.5t)(2.5)}{h}$$

When t = 40, the triangle has legs of 75 feet and 100 feet. Hence the hypotenuse h = 125 feet.

Then
$$\frac{dh}{dt} = \frac{(75)(-5) + (100)(2.5)}{h} = \frac{-375 + 250}{125} = -1.$$

The distance between the cat and the balloon is $\underline{\text{decreasing}}$ at 1 ft/sec.

- (b) When t = 50, the triangle has legs of 25 feet and 125 feet. Then the hypotenuse $h = 25\sqrt{26}$ feet. Then $\frac{dh}{dt} = \frac{(25)(-5) + (125)(2.5)}{25\sqrt{26}} = \frac{-5 + 12.5}{\sqrt{26}}$ $= \frac{7.5}{\sqrt{26}} \approx 1.471$. Now distance between the cat and balloon is increasing at a rate of about 1.471 ft/sec.
- (c) Using the expression for $\frac{dh}{dt}$ from part (a) and multiplying we obtain $\frac{dh}{dt} = \frac{-1375 + 25t + 6.25t}{h}$. $\frac{dh}{dt} = 0$ when 31.25t = 1375 and t = 44 sec Since $\frac{dh}{dt}$ goes from neg to pos at t = 44, this is a relative minimum.

$$\begin{array}{c}
1: expression for \\
distance \\
5: \begin{cases}
1: \frac{dh}{dt} \\
1: answer \\
1: rate
\end{cases}$$

$$2: \begin{cases} 1: \frac{dh}{dt} \text{ at } t = 50\\ 1: \text{explanation} \end{cases}$$

 $2: \begin{cases} 1: answer \\ 1: explanation \end{cases}$

- 3. p. 93
 - (a) The given function p' has degree 7. Therefore p has degree 8.
- 1:answer
- (b) The instantaneous rate of change of the function p at x = 6 is simply the value of p'(6).

$$p'(6) = 7 \cdot 5 \cdot 4^2 \cdot 2^3 = 4480.$$

- $2: \begin{cases} 1: p'(x) \\ 1: p'(6) \end{cases}$
- (c) A graph of the given derivative function p' is shown below. There has been no attempt to get the <u>vertical</u> scale accurate. However, x-coordinates of the relative extreme values are shown, and the intervals of positive and negative values are correct.

 $: \begin{cases} 1: p'(x) > 0 \\ 2: \text{answer} \end{cases}$

The function p is increasing if p'(x) > 0. This occurs for

$$-1 < x < 1$$
 and for $x > 4$.

(d) We know that the graph of p will be concave down on those intervals on which p'(x) is decreasing or p''(x) is negative.

$$p''(x) = (x-1)(x-2)^{2}(x-4)^{3} + (x+1)(x-2)^{2}(x-4)^{3} +$$

$$3: \begin{cases} 1: p'(x) < \\ 2: \text{answer} \end{cases}$$

$$2(x^2 - 1)(x - 2)(x - 4)^3 + 3(x^2 - 1)(x - 2)^2(x - 4)^2$$
.
Graphing p" we see that the zeros of p" are -0.526, 1.288, 2, and 2.953 and the graph of p is concave down on $-0.526 < x < 1.288$ and for

(On the graph of p" at x = 4 there is a relative minimum, but not a zero.)

Exam IV Section II Part B — No Calculators

- 4. p. 94
 - (a) $\lim_{x\to 0^+} f(x) = 2$ and $\lim_{x\to 0^-} f(x) = 2$. Thus $\lim_{x\to 0} f(x) = 2$.

1: answer

(b) $\lim_{h\to 0^-} \frac{f(0+h)-f(0)}{h}$ = the left-hand slope at x = 0 = 1

1: answer

(c) To the left of x = 0, f'(x) is constant (with a value of 1). Just to the right of x = 0, f'(x) appears to have a value of about 5. Thus $\lim_{x\to 0} f'(x)$ does not exist.

3: $\begin{cases} 1: \lim_{x \to 0^{-}} f'(x) \\ 1: \lim_{x \to 0^{+}} f'(x) \\ 1: \text{conclusion} \end{cases}$

(d) $\int_{-1}^{0} f(x) dx = \frac{3}{2}$. This is obtained by counting areas in the graph.

2: answer

(e) $\int_{-2}^{4} f(x) dx \approx \frac{2}{2} [0 + 2 \cdot 2 + 2 \cdot 6 + 2] = 18$

2: { 1: Trapezoid method 1: answer

5. p. 95

(a) Since
$$g(x) = \frac{x \cdot |x|}{x^2 + 1}$$
, then $g(-x) = \frac{-x \cdot |-x|}{(-x)^2 + 1} = \frac{-x \cdot |x|}{x^2 + 1} = -g(x)$ for all x.

Differentiate the equation obtained above: g(-x) = -g(x).

$$g'(-x) \cdot (-1) = -g'(x) \Rightarrow g'(-x) = g'(x)$$

Hence the derivative of the function g is an even function.

(b) For
$$x \ge 0$$
, $g(x) = \frac{x^2}{x^2 + 1}$

Then
$$g'(x) = \frac{(x^2+1)(2x)-x^2(2x)}{(x^2+1)^2} = \frac{2x}{(x^2+1)^2}$$

Therefore $g'(2) = \frac{4}{25}$.

(c)
$$\int_{0}^{1} g(x) dx = \int_{0}^{1} \frac{x^{2}}{x^{2} + 1} dx$$

$$= \int_{0}^{1} \frac{(x^{2} + 1) - 1}{x^{2} + 1} dx = \int_{0}^{1} \left[1 - \frac{1}{x^{2} + 1}\right] dx$$

$$= \left[x - \operatorname{Arctan} x\right]_{0}^{1}$$

$$= (1 - \operatorname{Arctan} 1) - (0 - \operatorname{Arctan} 0) = 1 - \frac{\pi}{4}$$

(d) $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} \frac{x^2}{x^2+1} = 1.$

(e) For
$$x \ge 0$$
, $g(x) = \frac{x^2}{x^2 + 1}$ and $g'(x) = \frac{2x}{(x^2 + 1)^2}$.

On the interval $[0,\infty)$, $g'(x) \ge 0$, so g is an increasing function. Since g'(x) exists for all $x \ge 0$, the function g is continuous.

$$g(0) = 0$$
 and $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{x^2}{x^2 + 1} = 1$.

Since g(x) never attains the value 1 (the numerator of the fraction is smaller than the denominator), the range of the function for $x \ge 0$ is the interval [0,1).

As shown in part (a), g is an odd function. Then the values of the function for negative inputs x are the numerical opposites of the values for positive inputs x.

Hence the range of the function g is the open interval (-1, 1).

2: answer

$$2: \begin{cases} 1: g'(x) \\ 1: g'(2) \end{cases}$$

1: answer

6. p. 96

(a)
$$G(x) = \int_{-4}^{x} f(t) dt$$

Then $G(-4) = \int_{-4}^{-4} f(t) dt$. Provided the function f is defined at t = -4 (and it is), then this integral has a value of 0.

(b) By the Second Fundamental Theorem, G'(x) = f(x).

Thus
$$G'(-1) = f(-1) = 2$$
.

- (c) The given graph is the derivative of G. The graph of G will be concave down if its derivative is decreasing; that is, if its second derivative is negative-valued. This occurs on the open intervals (-4,-3) and (-1,2).
- (d) The maximum value of G occurs at either a critical point or an endpoint of the interval. G has critical points at x = 1 and x = 3, where G'(x) = f(x) = 0. By summing areas of regions we estimate that at the critical points

$$G(1) = \int_{-4}^{1} f(x) dx = 7$$
 and $G(3) = 7 - \frac{4}{3} = \frac{17}{3}$.

At the endpoints,

$$G(-4) = \int_{-4}^{-4} f(x) dx = 0$$
 and $G(4) = \int_{-4}^{4} f(x) dx = 7 - \frac{4}{3} + 1 = \frac{20}{3}$

Therefore, G has its maximum value of 7 at x = 1.

1: answer

$$2:\begin{cases} 1:G'(x)=f(x)\\ 1:\text{answer} \end{cases}$$

3: { 1:answer 2: justification